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PARAMETER ESTIMATION FOR THE DIRICHLET-MULTINOMIAL
DISTRIBUTION USING SUPPLEMENTARY BETA-BINOMIAL DATA

Peter J. Danaher
Department of Statistics
Florida State University

_ Tallahassee, Florida 32306
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ABSTRACT
We develop estimates for the parameters of the Dirichlet-multinomial
distribution (DMD) when there is insufficient data to obtain maximum like-
lihood or method of moment estimates known in the literature. We do,
however, have supplemetary beta-binomial data pertaining to the marginals
of the DMD, and use these data when estimating the DMD parameters. A

real situation and data set are given where our estimates are applicable.
1. INTRODUCTION

Suppose we have t + 1 mutually exclusive events and Y; is the number
of times that event 7 occurs out of k independent trials, y = 0,1,...,t. Let
Y, conditional on the vector of probabilities I = #, have a multinomial
distribution, i.e., }7|ﬁ = (Yo,...,Yt)[ﬁ = 7 ~ multinomial(k,mo,...,m:).
Let IT have a Dirichlet distribution; then compounding the multinomial
distribution with the Dirichlet gives the so-called Dirichlet (or f—) com-
pound multinomial distribution (Johnson and Kotz 1969), also known as
the compound multinomial distribution (Mosimann 1962). It is commonly
known as the Dirichlet-multinomial distribution, denoted by DMD(k, r, X),
>0, 3;>0, 7=0,1,...,t, Y. oA =L
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z:?' An excellent literature review of the parameter estimation and appli-
"‘: cations of the DMD was given by Chuang and Cox (1985), although they
i did not mention the application of the DMD to magazine and TV exposure
3',; data (Chandon 1976; Leckenby and Kishi 1984; Rust and Leone 1984), an
;-4' application we will give in Section 4.

:‘ ) The DMD mass function is

A

h: fPM(Y =¢) = K I(r) T(k- E;'=1 Y5 +720)

:&;‘ (k— ¢, 9)! T(r + &) T (7o)

AN ¢ . . ¢

, I:IF—I(.%;;;T':?,OSyJ'Sk,j=1,---,t,Z_:yjsk,
.4_ =1 j=1

';: (1.1)
.:;, where T'(!) = (I — 1)I'({ — 1), the usual gamma function.

o, To fix ideas we will set ¢ = 3. The data needed to estimate A; , 7 =

0,1,2,3 is (nio,ni1,Mi2,n48), ¢ = 1,...,n, where n;; is the number of oc-
curences of event j for the 1** person and n is the sample size (E?’:o nij =
k, ¥V 1). Denote the total number of people in the sample who fall into

category j as n ; = Y .., nj.

Chuang and Cox (1985) estimated A, with

- -
2APLS ’J‘L’-

N e

.;‘.A
2 i
o k
"

“ where #i ; = n_;/n. We still need to find an estimate of 7, for which we now
:'."_: give four different estimates which have appeared in the literature.
! 1 Mosimann (1962) showed that the covariance matrix of IT (denoted La
4:': ) and the covariance matrix of ¥ (denoted Iy ) are related thus,
s k+71
A Ly = Lq . 1.3
'3‘. He suggested estimating X with 2 ;(k — #i.;)/k on the diagonal and
; —fijfj/k , 5 # j', on the off-diagonal and estimating Zp with Y., (n:; —
E::‘l 7i.;)2/(n — 1) on the diagonal an }_“?:l‘(n,-j — fij)(ni;» — R )/(n —1) on
".. the off- diagonal. Notice that ¥ and Ly are nonsingular 3 x 3 matrices
4
R (Mosimann 1962). Then, using (1.3),

1
k+7 <det(ﬁ,,))* |
)Z 1417 det(£4)/ ' |
‘z:‘ g |
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from which 7 can be obtained.
Brier’s (1980) estimate of 7 similarly comes from solving for 7 in the

following equation

k+7 1 L n.--—r'z_-z
= ZZ_J___z_
1+7 3(n-1) fi.j )

1=17=0

Both Mosimann’s and Brier’s estimates are based on the method of moments
estimation technique. Owing to the form of Brier’s estimate Chuang and Cox
(1985) called it a chi-square moment estimate.

The likelihood equations used to find X,- and 7 are

n nij—1 1 n nij—1

Z:ll:o [+,\J.=‘_Z=:1‘Z=:l+’\ s J 1)2)37
3

do=1-Y X, (1.4)
=1

3 n;;-1 A k-1

n . 1
222 1+;A,-="‘=ol+r’

1=15=0 =0

Due to the numerical difficulties of obtaining a solution to the likelihood
equations of (1.4) Chuang and Cox (1985) estimated 7 using the pseudo
maximum likelihood method of Gong and Sameniego (1981). Chuang and
Cox’s method is to substitute the A; of (1.2) into (1.1) then obtain the
likelihood equation which involves just the parameter r. Their likelihood

equation is
n 3 ny-1

A =
EZ E :#ﬂ=n§l+r |

1=17=0 (=0

However, if k = 1, we can use neither Mosimann’s nor Brier’s estimate of
r since (k+71)/(1+ 1) is 1 when k = 1. In addition, the maximum likelihood
and pseudo maximum likelihood methods do not give unique solutions when
k = 1 as there are only three linearly independent data and four parameters
to estimate. It is precisely when k = 1 that we desire to estimate 7. A reason
for this will be apparent in Section 4.

. ESTIM T Nk=

Let X; = Y, + Y3 and X; = Y, + Y3; then (X, X;) is the bivariate

distribution of the total number of occurences of events 1 and 3 and events 2
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and 3, respectively. The marginal distribution of each of the Y; is the beta-
binomial distribution (BBD) denoted by BBD(k,7A;,7(1—A;)), whose mass
function is obtained by letting ¢t =1 in (1.1).

An application of some general DMD theorems in Basu and de B. Pereira
(1982) shows that

Xy ~ BBD(k,7(A; + As),7(Ao + A2)),

(2.1)
X ~BBD( (A2+/\3) T(/\0+A ))

The joint mass function of X, and X, is

min{z:,23}

k!T(r)
F(T + k) z3=maz{0,z1+z1—k}
I(zy —z3 + 1A (22 — 23 + 7A2)T (2 + 7A3)T(k + 23 — 21 — Z2 + 7o)
(.’L‘l - 1:3)!(:1:2 — 233)!233!(16 +x3— 11 - .’52)! H?:O I‘(TA,)

9(X| =z, X2 =122) =

(2.2)
0<z; <k, 1=1,2.

We saw in Section 1 that to estimate 7 when k = 1 we need some extra
data. From (2.1), X, ~ BBD(k,7(A; + As),7(Xo + A2)) 80 we can estimate
7(A1+ A3) and 7{Ag + A2) using supplementary data pertaining to X}, if such
data is available; similarly for X,. Define a; and §;, 1 = 1, 2, as follows;

T(A1+/\3) =a , T(A0+A2) —"=ﬂ1 ’
T(Ad2+As)=az2, r1(le+Ar1)=p82.

From (2.3), a; + 8 = 7(Ao+ A1+ A2+ Ag) =7, ¢ = 1,2. This means that
when «; and f; are estimated using supplementary BBD data the estimates

(2.3)

should be constrained so that
ar+fr=az+P2=r1. (2.4)

The problem with trying to use constrant (2.4) is that 7 is unknown. Chan-
don (1976) could not, so did not, apply constraint (2.4) when estimating
a; and B;. As a result, &, + 51 # g + B, where &; and [;.- are MLEs or
method of moment estimates obtained by using supplementary BBD data
for X;, + = 1,2. Knowing this, he took a weighted average of &, + B, and
&5 + B to estimate r with

+ | ®
=

2
Z & + fi) ——, where w; = - ,i=1,2. (2.5)

4
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5 '
:E:¥ We found this unappealing since this estimator of 7 is rather ad hoc. He
1
sty could equally well have chosen the arithmetic, geometric, or harmonic mean
,;- of (&¢+B,-) 1=1,2.
2:_ Our procedure is as follows. Denote the correlation between X; and X,
e
's-j as px,.x,- Then (2.3) substituted into px, x, gives
Y
o S dods = A1dg
:: P VO A8) (Ao + A2) (A2 + As) (R + A1) (2.6)
-',E’.:.o _ ,2(20ds — A1)
B 0 = .
e vaifiazfs
o Solving for r in (2.6) gives
)
o
2 o ( 01810265 )* 2
e (AL + A3) (Ao + A2)(Az + As) (Ao + A1)
Ll From (2.3) it follows that
g
:3'-' a
b MAde= =S =P
o ay + B a; + B (2.8)
. az B2 '
" A2+ A3 = Ao+ Ay =
,' 2T T a4+ 8 ot M az + B2
""-E Substituting the four equations of (2.8) into (2.7) gives
"
'})" T = \/(Cq + ﬂl)(az + B2) . (2.9)
7
804 The above construction shows that it is more reasonable to estimate r with
L the geometric mean of & + J;, i.e., Tom = \/(&1 + ﬁl)(&g + ﬁg), rather than
G0
the weighted average estimate, 7,.
A
A
.'i“' 3. ASYMPTOTIC PROPERTIES OF #
: ‘e :
: If a; and f; are estimated with consistent estimates then, as n — oo,
‘0
.-t, N a; + oz
: Y Tc - ax) + (1§ ?
o N a1+/ az+83
o
- which equals 7 iff (2.4) holds. On the other hand, #,, — 7 iff (2.9) holds.
;‘3 Since (2.4)=>(2.9), but the converse is not true, f,,, is consistent under a
o
‘i',,' weaker assumption than that required to make 7, consistent.
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® 5
o
P

KN OO O I (O O A2 £ O G OB ONG : ont A OO
AP ST, Al M N At e O O o S N e i e D RS N D SRS XY




N R

- SHIX

b il Wl i s ¢
Al S
r’b"'f“'r";

4 .
-
yo:

A
LA §
AN

s
/ g

- > b e
-

«
'IJ'E

,__,.
=
XX

-

« »
L g

LAK S
]
.ltl" o

f—'y nnt

Jtalte
PR S

[N

.

"M
FLNTS

-
-
~

-

o) g
N s

,¢,..
Ty »
-'-)"-

tOf
¥ A

v -
COR

24

1
' A
LY -l "

> T b

e
X
[ g

1

CA AL REd uid add obh Sl ahk bl S

T'T—\,’T'W-'-““-‘T

We can compare the asymptotic relative efficiency (ARE) of 7. and
Tgm by examining the ratio of their asymptotic variances. Define ARE =
AV (7.)/AV (7,m) where AV (-) denotes asymptotic variance. The AV of the
two competing estimates can be obtained from knowledge of the asymptotic
joint distribution of (&l,ﬁl,&g,ﬁg) and use of the delta method.

If the &;’s and ﬁ;’s are MLEs then the asymptotic joint distribution can
be obtained from the from general MLE theory (Lehmann 1983), i.e.,

VAl = 8) —» MVN(0,I"}(6)) ,asn — oo, (3.1)

where 6 ' (a1,81,a2,02) and 1(5) is the information matrix. Danaher
(1987) proved that the regularity conditions for (3.1) to be true are satisfied
for the MLEs of the BBD parameters.

Denote the information matrix of (a;,f;) as I(ay,B;), and the mass

function of X; ~ BBD(k,ay,f;) as fBBD i =1,2. Then

. i
Y Al z) foBP — Ao + Birk) ,—A( + Bi k)
I(ai’ﬂl') = n=t P ’
— Aos +Bink) 4 ) AlBik —z:)fEBP — A(ay + Bi k)
L zi=0 §

where A(y,) = im0 1/(7 + 5)%.
If it is assumed that the bivariate distribution (&l,ﬁl) is independent
0

of (dg,,ég) then
I(8) = .
@) [ I(az,ﬂz)]

To ensure that Lehmann’s (1983, p345) definition of asymptotic relative

I(ai,B)
0

efficiency is well defined, we must assume that (2.4) is true when comparing
the asymptotic variances of 7, and #,,,. Use of the delta method and (2.4)

gives

ARE = Z/I"Y8)Z,/(Z )] 1 (0)Zgm)
= ;T.;l’.a—,(ala Qp, az, 052) and fg'". = ‘%(1, 1,1, 1).
Clearly, when a; = az the ARE = 1. Some ARESs for selected a;’s and

Bi’s are given in Table I. The table shows that the ARFE is greater than one

where £/

for three of the four cases considered. An interesting observation is that for
given o; and (3; the ARE does not vary much with k. Due to the compexity

6
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':34 Table I: ARE comparison of 7; and fg,, for some a;’s and §;’s.
e —
: a; and B;
N ap=1p=2 a;=058=1 &=015=04 a; =106, =5
-,‘.Ej k a;=202=10a;=0202=13 a3=03p3=03 a3=3 (=12
\‘ 2 1.11 0.93 1.02 1.24
) 4 1.11 0.92 1.01 1.24
O 8 1.11 0.91 1.01 1.24
a0
gy
P of the information matrix the author was unable to find conditions on «; and
'.:f.: B; under which ARE > 1. Hence, to check the conjecture that ARE > 1
x"'}, most of the time, two hundred randomly chosen a;’s and §;’s were selected
:'.. to conform to (2.4) and the ARE calculated. Some 144/200 =72% of the
_.1 cases had ARE > 1. Hence 7,,, is asymptotically more efficient than 7, for
: approximately three-quarters of the possible a; and §; which satisfy (2.4).
e
T ICATIONS
o o y .
s Suppose an advertiser is about to launch an advertising campaign by
y _(t"; placing k ads in each of two different magazines. To evaluate the effectiveness
WS of the campaign the advertiser would like to estimate the proportion of the
‘ population which sees at least one of the ads (known as the reach). We say
it f: that a person is ezposed to an ad when he or she sees the ad. Let Y; = the
::. ; number of exposures ezclussve to magazine 1, Y2 = the number of exposures
wly ezclusive to magazine 2, and Y3 = the number of exposures to both magazines
: 1 and 2, for a particular person with 0 < Y; < k, ¢+ =1,2,3. Then X;, as
_,f defined in Section 2, is the number of exposures a person has to magazine
" f ‘ i, i = 1,2. Chandon (1976) modelled ¥ with the DMD and the exposure
i distribution for a single magazine (X; here) was first modelled with the BBD
:;, ' by Metheringham (1964). The DMD has also been used to model combined
:"" TV and magazine exposure data (Rust and Leone 1984).
\'.;- In the media survey we used for our data two questions were asked of
i the respondents (for weekly magazines);
3 " Q1) “Have you personally read or looked into any issue of ... (magazine
Q." name) in the last seven days - it doesn’t matter where?” (Has a Y/N answer).
R
Sy 7
¢
N

M r

0 0 S, ; > » » . 5 oLty T . AR, R S s
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Q2) “How many different issues of ...(magazine name), if any, do you

personally read or look into in an average month - it doesn’t matter where?”
(Has answer 0,1,2,3,4 issues).

The wording of Q1 and Q2 are modified appropriately for two-weekly,
monthly and two-monthly magazines. These questions were asked for forty
different magazines.

An implicit assumption in the magazine advertising field is that a person
who reads a magazine is exposed to all the advertisements in that magazine.
This is unlikely to be true for people who meet the criterion of “read” in
Q1 and Q2. However it is usually impractical to ask respondents which
advertisements they have been exposed to so we cannot avoid making this
assumption for the available data.

There are many media schedules an advertising agency can specify whose
exposure distribution cannot be directly estimated from Q1 and Q2. For
example, a schedule with 3 ads in each of two different magazines cannot
be estimated using Q1 and Q2. We want, therefore, to construct a model
which not only estimates observable exposure distributions accurately but
can be used to estimate (or predict) exposure distributions outside the range
of exposure distributions covered by Q1 and Q2.

The first step in using (1.1) to model the exposure distribution of ¥ is to
estimate the parameters of the DMD. When solving the likelihood equations
we come up against a data problem. The response to Q2 does not tell us
what a person’s reading behavior was in a specified week, it only gives us the
total number of issues read in the last four weeks. If a person’s response to
Q2 is “4” then clearly they saw each issue but if their response is a “2” we
have no way of knowing which two issues were read. Hence Q2 cannot give
us the data regired to fit (1.1). We can, however, use Q1 to fit (1.1) because
here a Yes/No response tells us precisely whether or not a person read the
last issue of a magazine. The problem this time is that £ = 1 when using
Q1 to fit the DMD and we saw in Section 1 that the conventional methods
for estimating 7 do not work wken k = 1. We can, therefore, use (2.9) to
estimate 7 in the following way.

The response to Q1 gives us data (nio, n1, Riz, ni3), E,’ ni,; =1, ni; €
{0,1} V 1. These data can be used to estimate A; using (1.2). The response
to Q2 gives us data {n,,}, ¢ = 1,2 where n,, is the number of people in the

sample who have z; exposures to magazine 1,0 < z; < 4,1 = 1,2. Hence we

8

| ™ o« ¥ LT - - +
DU A OOT TR A SISOV A NS AR AR ACRIR A

.

\J
‘. »", ¢

h ..'o A l,o:"




Table II: Observed Exposure Distributions and Parameter Estimates for the
New Zealand Listener (NZL) and Time Magazine; n = 5201.

Observed Univariate Exposure Distribution

Exposures 0 1 2 3 4
NZL 2741 322 286 94 1758
Time 4373 301 186 54 287
Bivariate (ng,n.,n.2,n3) = (2975,1741,189,296)

Data where n; = Y . n;

Parameter & =0.0743 j3,=01103 7 =0.2473
Estimates G2 = 0.0498 (5 =0.4517 7, = 0.3043

can use {nz,} to get estimates of a; and f; in (2.3) by using the method of
moments or maximum likelihood estimation for the BBD.

Once the parameters of (2.2) have been estimated we can estimate {or
predict) the mass function of (X, X2) for values of k other than 1 or 4, the
values available from the data.

In Table II we give the observed univariate and bivariate exposure dis-
tributions for the New Zealand Listener and Time Magazine along with the
MLEs for a; and B;. Since (2.4) does not hold (even approximately) for the
parameter estimates we cannot use our derived form of the ARE to compare
the asymptotic efficiency of 7, and 7.

The exposure distribution of interest to advertisers is not the bivariate
exposure distibution (X, X3), but rather X¢,e = X; + X2, i.e., the total
number of exposures a person has to the ad campaign. Having estimated the
parameters of (2.2) we obtain an estimate of the probability mass function of
Xiot by a change of variables. If we denote the mass function of the exposure
distribution as f(X;.) then reach is 1 — f(X;oe = 0). The observed reach is
52.5% while the estimated reachs using 7,,, and #, are, respectively, 53.1%
and 51.5%. Hence use of 7, in (2.2) gives a closer estimate of reach than
when 7. is used.

To further demonstrate the usefulness of the geometric mean estimate
of 7 we consider the data from Mosimann (1962). These data are frequencies
of occurrence of different pollen grains made at n = 73 different core levels.

Here the pollen counts totalled 100 at each core, i.e., & = 100 so there



-

20

ST,

2

_';;E Table III: Six Estimates of 7 for Mosimann’s (1962) pollen data.

. Y

n Mosimann’s  Brier's pseudoMLE MLE  #pn 7,

81.92 73.21 62.97 60.19 57.76  54.23

2

P

*{ is no need to use f,, as the four methods outlined in Section 1 are all
"\\’i applicable, with maximum likelihood being the best (Chuang and Cox 1985).

37 Nonetheless, we will estimate 7 with 7, to show that it competes admirably

with the four estimates in Section 1.

:: Let Yy =pine, Y; =oak, Y2 =alder and Y; =fir pollen counts (cf. Mosi-

:::.:: mann (1962) for details of these data).

::“'3 Table III gives the estimates of 7 using the four techniques in Section

C: ; 1 as well as for 7, and 7, when «o; and §; are estimated by maximum
2 " likelihood. The estimate which is closest to the MLE is f, even closer to
the MLE than the pseudo-MLE. Chuang and Cox (1985) point out that the

pseudo-MLE is both easier to calculate and asymptotically comparable to the

{ MLE. Their estimate does require some degree of programming, however, as

:E' :'E do the MLEs of a; and B; used to calculate fy,,. If & and ﬁ; for 7, are

N estimated by the method of moments the computations required can easily be

&. conducted on a calculator. Estimating «a; and 3; by the method of moments

D) for Mosimann’s data gives 74, = 56.69. This estimate is still quite close to
s the MLE estimate of 7 in Table III and has the advantage of requiring no

:?.:'_: programming whatsoever.

~.' i
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